تبلیغات
دانشجویان مواد دانشگاه تجن - مطالب شیمی تجزیه
دوشنبه 1390/10/12

تیتراسیون های رسوبی

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

تیتراسیون های رسوبی:

اگر یک واکنش رسوبی به طور کمی و سریع انجام شود، می توان از آن برای عمل تیتراسیون و سنجش حجمی استفاده کرد. معرف هایی که معمولا برای تعیین نقطه پایان عمل تیتراسیون های رسوبی به کار می روند به سه دسته ی اصلی طبقه بندی می شوند.

الف) معرف هایی که در دسته اول قرار دارند شامل آن دسته از معرف های شیمیایی هستند که بعد از کامل شدن رسوب گیری با تیترانت اضافی موجود در محلول ترکیب شده و رسوب رنگی تولید می کنند و لذا خاتمه عمل با حجم تیترانت مصرفی و تشکیل رسوب رنگی مشخص می شود. (تشکیل رسوب کرومات نقره آجری رنگ در نقره سنجی به روش مور)

ب) معرف هایی که در دسته ی دوم طبقه بندی می شود شامل ترکیبات شیمیایی هستند که با محلول تیترانت اضافی مازاد بر واکنش رسوبی عمل نموده و خاتمه عمل، محصول رنگی محلول خواهد بود. غالبا این محصول رنگی کمپلکسی است که معرف با تیترانت می دهد. (کمپلکس قرمز Fe3+ با تیوسیانات در نقره سنجی به روش ولهارد)

ج) معرف های رسبی که در دسته ی آخر قرار دارند شامل گونه ها و مواد شیمیایی هستند که روی رسوبی که در طول تیتراسیون تشکیل می شود جذب سطحی می شوند، رنگ معرف جذب شده بر روی رسوب با رنگ نمونه محلول آن متفاوت است. از آن جایی که جذب سطحی معرف روی رسوب وقتی صورت می گیرد که تیترانت اضافی در محلول موجود باشد (برای مثبت شدن رسوب)، لذا خاتمه تیتراسیون با تغییر رنگ مشخص می شود. (استفاده از معرف فلوئورسین در تعیین یون کلرید در نقره سنجی به روش فاجانز)

تعیین غلظت یون نقره به روش مور

غالبا در تیتراسیون های رسوبی از محلول های نیترات نقره استفاده می شود. در روش مور، یون نقره برای سنجش یون های کلراید، برماید و یداید به کار می رود.

نقطه پایان با افزودن یون نقره اضافی در حضور پتاسیم کرومات کافی و تشکیل رسوب کرومات نقره قرمز آجری رن تعیین می شود.

2Ag2++ CrO42- ---> Ag2CrO4 (S­)      قرمز آجری

برای ممانعت در تبدیل یون کرومات به یون هیدروژن کرومات (HCrO4-) لازم است PH محلول را بیش از 6/5 نگه داشت. ا طرفی چون در PH های بالاتر از حدود 10/3 هیدروکسید نقره با هالید های نقره همزمان رسوب می کند، PH عمل بایستی بین 6/5-10/3 باشد و بهتر است در PH های خنثی صورت گیرد.

در روش مور برای سنجش یون کلرید، محلول شامل یون های کلرید با محلول استاندارد نقره تیتر می شود و به عنوان شناساگر محلولی از کرومات به محلول مجهول اضافه می شود که ایجاد رنگ زرد می کند. وقتی رسوب کلراید نقره کامل شد، اولین قطره اضافه نقره با یون های کرومات تولید رسوب قرمز آجری کرومات نقره می کند ولی در حضور کلرید نقره سفید رنگ، رنگ محتویات ارلن زرد کدر می گردد.

اگر نیترات نقره به صورت خالص نباشد ابتدا باید محلول تهیه شده آن را توسط محلول استاندارد کلرید سدیم استاندارد نمود.

تعیین مقدار KBr مجهول به روش فاجانز

در روش فاجانز، یک معرف جذبی برای تعیین نقطه پایان تیتراسیون رسوبی به کار می رود. گرچه در تیتراسیون های متعدد، معرف های جذبی زیادی در دستری هستند لکن می توان با یک مثال ساده راهی را که این معرف ها در تعیین نقطه پایان به کار می برند، نشان داد.

معرف خذب سطحی (فلوئورسین در سنجش یون کلرید توسط نیترات نقره و یا معرف ائوزین در سنجش یون برمید توسط نیترات نقره)

در محلول باید به صورت آنیون خارج گردد که چنین شرایطی با کنترل PH محلول حاصل گردد.

قبل از نقطه اکی والان تیتراسیون، محلول حاوی یون های اضافی کلرید می باشد که رسوبی با بار سطحی منفی حاصل می کند و بار سطحی منفی، یون های منفی معرف جذبی را از خود دور کرده و در نتیجه، یون ها به همان حالت در محلول باقی می مانند.

بعد از نقطه اکی والان، یون های Ag+ اضافی جذب رسوب کلرید نقره شده و رسوب بار سطحی مثبت حاصل می کند. در این حالت معرف (آنیون) جذب رسوب شده و رنگ رسوب از سفید به رنگی دیگر (صورتی) تغییر می یابد. تغییر رنگ مشاهده شده نشانه پایان تیتراسیون می باشد. معرف های جذبی مناسبی برای تیتراسیون های کلرید، برمید، یدید و تیوسیانات توسط یون نقره وجود دارند.


نظرات()

دوشنبه 1390/10/12

تیتراسیون های اکسیداسیون و احیا (منگانومتری)

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

تیتراسیون های اکسیداسیون و احیا (منگانومتری):

تیتراسیون های اکسیداسیون و احیا شامل تمام واکنش هایی است که در برگیرنده ی تغییر عدد اکسیداسیون یا انتقال الکترون بین مواد موجود در واکنش می باشد و محلول های استاندارد عوامل اکسید کننده یا احیا کننده هستند. اما در تیتراسیون ها معمولا از عوامل اکسید کننده استاندارد بیشتر استفاده می شود و از عوامل احیا کننده استاندارد به علت اکسید شدن آن ها توسط اکسیژن هوا کمتر استفاده می شود.

پرمنگنات پتاسیم، اکسید کننده پرقدرتی است که شاید در بین تمام عوامل اکسید کننده استاندارد، بیشترین کاربرد را داشته باشد. دسترسی آسان، قیمت اکسید کنندگی بالا و عدم نیاز به شناساگر در تیتراسیون ها به علت رنگ شدید محلول آن، عواملی است که کاربرد این واکنش گر را گسترش داده است. از جمله معایب این واکنش گر می توان به پایداری محدود محلول های استاندارد آن و وابستگی شدید توان اکسید کنندگی آن به اسیدیته و PH محیط اشاره کرد. بنابراین قدرت اکسید کنندگی و طبیعتا محصولات حاصل از احیای پرمنگنات در شرایط و PHهای مختلف، متفاوت است. غالبا ترجیح داده می شود که تیتراسیون های منگانومتری در محیط اسیدی قوی انجام گیرد. عدد اکسایش اتم منگنز (Mn) +7 است.


نظرات()

دوشنبه 1390/10/12

تیتراسیون خنثی شدن اسید و باز

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

تیتراسیون خنثی شدن اسید و باز:

خنثی شدن یعنی از بین رفتن اثر بازها توسط اسیدها و یا اثر اسیدها توسط بازها که محصول این واکنش نمک و آب است. محلول های استاندارد اسیدها و بازها به طور گسترده ای برای تعیین آنالیت هایی استفاده می شوند که خود اسید یا باز و یا ترکیباتی هستند که می توان آن ها را با عوامل شیمیایی به گونه های اسیدی و بازی تبدیل کرد. واکنش های خنثی شدن، واکنش های سریع با معادله شیمیایی مشخص بوده و به طور کلی غالب ویژگی های یک واکنش اسید ایده آل برای تیتراسیون حجمی را دارا می باشد. با استفاده از عمل خنثی شدن و با معلوم بودن غلظت اسید و باز تیترانت، غلظت و مقدار اسید و باز آنالیت را می توان بدست آورد.

اسیدها و یا بازهای قوی به عنوان محلول های استاندارد در تیتراسیون خنثی شدن به کار می روند زیرا واکنش میان آن ها و آنالیت نسبت به اسیدها و بازهای ضعیف، کامل تر است. محلول های اسید استاندارد که برای تیتراسیون بازها مورد استفاده قرار می گیرند می توان HCl، H2SO4، HClO4 را نام برد. از HNO3 استفاده نمی شود زیرا خاصیت اکسندگی قوی دارد که موجب واکنش های نامطلوب و ناخواسته می گردد. از جمله بازهای استاندارد می توان NaOH، KOH و Ba(OH)2 را نام برد.

دقت شود که در تیتراسیون اسید قوی و باز قوی و بلعکس، PH نقطه اکی والان برابر 7 است و در مورد دیگر، PH ممکن است بزرگتر یا کوچکتر از 7 بشود که بستگی به جسم تیترشونده و شرایط تیتراسیون دارد.


نظرات()

دوشنبه 1390/10/12

تیتراسیون ها و سنجش های حجمی

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

تیتراسیون ها و سنجش های حجمی

مقدمه:

روش های تیترسنجی گروه بزرگ و مهمی از روش های کمی را تشکیل می دهند و از جمله روش های تجزیه ای هستند که در آن ها مقدار یک ترکیب تویط مقدار لازم از یک واکنشگر استاندارد که به طور کامل با نمونه واکنش می دهد، تعیین می شود.

تیتراسیون های حجم سنجی، روش های سریع، راحت و دقیقی هستند که به سهولت انجام پذیرند و به همین دلیل کاربرد گسترده ای یافته اند.

تئوری:

تجزیه حجمی به طور کامل شامل تعیین حجم محلولی با غلظت مشخص است که باید با محلول جسم مورد سنجش یه طور کلی واکنش کند. محلولی که غلظت آن دقیقا معلوم است، محلول استاندارد یا تیترانت نامیده می شود. ماده ای که مقدار آن باید تعیین شود، تیترشونده یا آنالیت نام دارد و فرایند افزودن محلول استاندارد به آنالیت را تا تشکیل واکنش تیتراسیون می نامند.

تیتراسیون معمولا با افزودن محلول استاندارد از یک بورت و یا از یک وسیله ی اندازه گیری حجمی دیگر به حجم معینی از محلول آنالیت انجام می گیرد تا اینکه واکنش بین آن ها کامل شود. نفطه ای که در آن این عمل انجام می گیرد و در آن مقدار واکنش گر استاندراد افزوده شده از نظر شیمیایی دقیقا هم ارز آنالیت است، نقطه هم ارزی یا نقطه اکی والان نامیده می شود.

بدیهی است که هر اندازه در تهیه محلول استاندارد دقت شود، نتایج دقیق تری به دست خواهد آمد و اگر لازم باشد می توان محلول استاندارد تهیه شده را با یک محلول استاندارد اولیه (که غلظت آن دقیقا معلو است و برای همین منظور ساخته شده) تیتر کرد.

تعریف محلول های استاندارد اولیه و ثانویه:

محلول استاندارد اولیه، ماده ای است که برای تعیین غلظت دقیق ماده دیگر، به کار می رود. محلولی را می توان به عنوان محلول استاندارد اولیه به کار برد که دارای خصوصیات زیر باشد:

1.  پایدار باشد (در مقابل عوامل جوی و مواد آزمایشگاه حساس نباشد و واکنشی انجام ندهد، مثلا جاذبه الرطوبه یا فرار نباشد).

2.  خالص باشد یا از درجه خلوص بالا و مشخص برخوردار باشد.

3.  جامد باشد و فرمول شیمیایی، با ترکیب مطابقت داشته باشد.

4.  در حلال محیط تیتزاسیون محلول باشد.

5.  وزن فرمولی و عدد اکی والان بالایی داشته باشد (باعث می شود میزان خطای توزین به حداقل برسد)

6.  تا جایی که امکان دارد انتخاب گر (Selective) باشد.

بنابراین محلول سود که جاذبه الرطوبه است یا محلول هیدروکلریک اسید نمی توانند به عنوان محلول استاندارد اولیه مصرف شوند، زیرا غلظت آن ها دچار تغییراتی می شود لذا برای استاندارد کردن این محلول ها و تعیین نرمالیته دقیق آن ها از یک محلول استاندارد اولیه استفاده می کنند. به عنوان مثال وقتی می خواهیم محلول هیدروکلریک اسید N/10 داشته باشیم، تقریبا محلول N/10 می سازیم و سپس توسط تیتراسیون با محلول استاندارد اولیه سدیم کربنات، دقیقا محلول N/10 را از آن می سازیم که به آن محلول استاندارد ثانویه می گویند.

تشخیص نقطه اکی والان در یک تیتراسیون:

طبیعتا تکمیل تیتراسیون باید با تغییراتی که برای چشم قابل رویت باشد، مشخص می شود. در تیتراسیون هایی که به شیوه کلاسیک انجام می گیرند. این تغییر یا به وسیله خود محلول استاندارد (رنگ خود محلول) و یا اغلب با افزودن واکنشگر کمکی به نام معرف یا شناساگر به محلول آنالیت صورت می گیرد و پس از آن که واکنش بین ماده و محلول استاندارد و عملا کامل شد، شناساگر در محلول تغییر مرئی و واضحی (تغییر رنگ و یا تشکیل کدری) ایجاد می کند. نقطه ای که در آن معرف تغییر رنگ می دهد، نقطه پایانی تیتراسیون نامیده می شود و حجم لازم برای کامل شدن تیتراسیون از اختلاف بین درجات بورت در آغاز و پایان تیتراسیون تعیین می شود.

نقطه اکی والان در یک تیتراسیون یک مفهوم نظری است، در حقیقت موقعیت این نقطه را فقط بر اساس تغییرات فیزیکی که در رابطه با نقطه اکی والان است می توان حدس زد. این تغییرات خود را در نقطه پایانی آشکار می سازد.

در یک تیتراسیون ایده آل، نقطه پایانی بر نقطه اکی والان منطبق می شود. اما در عمل همیشه اختلاف جزیی بین این دو نقطه وجود دارد که مربوط به نارسایی تغییرات فیزیکی (به ندرت شناساگر را می توان یافت که دقیقا در نقطه هم ارزی تغییر رنگ دهد) و محدودیت توانایی ما در مشاهده این تغییرات (توانایی و قدرت بنیادی در تشخیص تغییر رنگ) است. خطای تیتراسیون نیز محصول این عوامل است و در انجام یک تیتراسیون همواره سعی بر این است که شناساگر و شرایط عمل به گونه ای انتخاب شود که اختلاف بین نقطه پایانی و نقطه هم ارزی به حداقل برسد.

برای اینکه یک واکنش شیمیایی در تجزیه حجم سنجی مورد استفاده قرار بگیرد باید دارای شراط زیر باشد:

1.  تیترانت و آنالیت به طور کامل و با نسبت استوکیومتری و هم ارزی مشخص با هم واکنش دهند.

2.  واکنش تیتراسیون باید سریع باشد.

3.  در نقطه هم ارزی تغییر محسوسی در برخی از خواص شیمیایی و فیزیکی محلول آنالیت به وجود آید.

4.  یک معرف مناسب برای واکنش تیتراسیون مورد نظر در نقطه پایانی وجود داشته باشد.

انواع تیتراسیون های حجمی:

الف) تیتراسیون های خنثی شدن اسید و باز (اسید سنجی و قلیا سنجی)

این گروه از تیتراسیون ها شامل سنجش غلظت یک اسید توسط یک محلول باز استاندارد (اسیدیمتری) و یا سنجش و اندازه گیری مقدار باز موجود در یک محلول توسط محلول استاندارد اسید (قلیا سنجی) می باشد. اسید و باز آنالیت می تواند به صورت آزاد وجود داشته باشد یا در نتیجه هیدرولیز یون های آنالیت به وجود آید. واکنش کلی عبارت است از:

H+ + OH- ---> H2O

زیرا هر مول H+ با یک مول OH- خنثی می شود. یک اکی والان از هر اسید در محلول آبی تولید یک مول پروتون (H+) می کند و یک اکی والان از هر باز در محلول آبی تولید یک مول هیدروکسید (OH-) می کند.

ب) تیتراسیون های اکسیداسیون احیا

واکنش های این نوع از تیتراسیون ها از نوع واکنش های اکسیداسیون و احیا بوده که شامل مبادله الکترون بین گونه های الکترواکتیو است. در این نوع از تیتراسیون ها، تیترانت و تیترشونده عوامل احیا کننده و اکسید کننده هستند و یک آنالیت احیا کننده توسط یک تیترانت اکسید کننده و یا یک آنالیت اکسید کننده با یک عامل احیا کننده تیتر می شود، به عنوان مثال تیتراسیون های منگانومتری

ج) تیتراسیون های رسوبی

در این نوع تیتراسیون ها از واکنش میان تیترانت و تیترشونده، رسوب تشکیل می شود و محصول واکنش تیتراسیون رسوب است. معمولا این تیتراسیون ها توسط محلول های نیترات نقره انجام می گیرد.

د) تیتراسیون های تشکیل کمپلکس

این تیتراسیون ها شامل واکنش های تشکیل کمپلکس است و در آن تیترانت و آنالیت به عنوان عوامل کمپلکس کننده و کمپلکس شونده بر یکدیگر اثر می کنند. مهمترین واکنش گر در تیتراسیون های تشکیل کمپلکس، اتیلن دی آمین تترااستیک اسید (EDTA) است و به عنوان یک عامل کمپلکس کننده ی قوی عمل می کند.

روابط هم ارزی و استوکیومتری و کاربرد آن ها در تیتراسیون:

همان طور که قبلا توضیح داده شد، در نقطه هم ارزی و استوکیومتری و کاربرد آن ها در تیتراسیون:

همان طور که قبلا توضیح داده شد در نقطه هم ارزی تعداد اکی والان های تیترانت و تیترشونده در محلول برابر است:

eq1 = eq2

از تعریف نرمالیته محلول داریم:

N=eq/V ---> eq=N.V ---> N1V1=N2V2

در این رابطه در طرفین معادله عبارت حجم مشاهده می شود. برای بیان V1 و V2 از هر واحد حجمی می توان استفاده کرد به شرط آن که واحد یکسانی برای هر دو بکار رود.


نظرات()

چهارشنبه 1390/09/23

اسپكتروفتومتری تشدید مغناطیسی هسته NMR

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

«اسپكتروفتومتری تشدید مغناطیسی هسته NMR»

 وقتی پروتونی را در میدان مغناطیسی خارجی قرار می دهیم حاصل قرار گرفتن آن ایجاد چرخشی دیگر است. به فركانس چرخش پروتون در میدان مغناطیسی فركانس تقدمی پروتون ها می گویند و پروتونها به این ترتیب می توانند امواجی هم فركانس با فركانس چرخش را جذب كنند و جذب و نشر انرژی در پروتون ها اتفاق می افتد.

در ساخت دستگاه NMR به دو طریق می توان عمل كرد.

1- تغییر میدان مغناطیسی

2- تغییر فركانس رادیویی

دستگاهی كه در آن فركانس ثابت است و میدان را به میزان مختصر تغییر می دهیم ساده تر است.

دستگاههای NMR  میدان آنها در محدوده كوچكی تغییر می كند و فركانس ثابتی به همه پروتون ها می تابد.

بنابراین این نوع دستگاه یك میدان اولیه ثابت و یك میدان ثانویه متغیر دارد كه sweep generator این كار را انجام می دهد. به این دستگاهها دستگاه continuous wave (c.w) میگویند.

 

دستگاههای جدید FT-NMR یا pulse-NMR

به این دستگاهها pulse NMR system گویند. هر پالس شامل تمام فركانس هایی است كه برای رزونانس رسیدن تمام پروتونها لازم است كه در 0.01 ثانیه فراهم می شود.  میدان در آنها ثابت است و فركانس تغییر می كند Magnet باید همواره روشن باشد تا یكنواختی میدان به هم نخورد در زمان كوتاه پالسی به نمونه فرستاده می شود كه حاوی تمام فركانس هایی است كه برای به رزونانس رسیدن همه پروتون ها لازم است.

1- با این روش می توان تعداد زیادی طیف را در فواصل زمانی كوتاه گرفت

2- همچنین می توان از هسته هایی با فراوانی كم هم می توان طیف گرفت.(افزایش حساسیت)

3- از نمونه، با مقدار كم طیف بگیریم

طیف گیری از نمونه مقدار كم: زیرا با این دستگاهها می توان در زمان كوتاه تعداد Scanها را زیاد كرد كه با جمع كردن پیك ها noise به اندازه پیك اصلی افزایش نمی یابد. افزایش شدت پیك ها با رادیكال تعداد اسكن متناسب است. اما از حدی بیشتر با افزایش تعداد اسكن هم طیف خوبی نمی گیریم و فقط باید مقدار نمونه را زیاد كنیم.

برای یكنواخت (ثابت) بودن میدان لازم است مگنت دائما روشن باشد. روشن بودن دائمی مگنت گرماایجاد می كند با استفاده از chiller آن را خنك می كنیم. مگنت دستگاه ما الكترومگنت فركانس 80HTZ و میدان حدود 2Tesla است. البته از80HTZ  به بالا دیگر از الکترو مگنت استفاده نمی شودو به جای آن  از مواد ابر رسانا superconductive  برای ایجاد میدان استفاده می شود اما این مواد  در دمای زیر صفر این خاصیت را دارند كه برای تامین این دما از ازت یا هلیم مایع استفاده می شود. (عیب آن)

هر چه میدان را قویتر كنیم R(resolution)بیشتر می شود.

 

دستگاه قدیمC.W-NMR

میدان در محدوده کوچکی تغییر می کند و فرکانس ثابتی به همه پروتون ها می تابد.

 محل جذب پروتون ها در NMR را محل شیفت شیمیایی پروتون ها می گویند. محل شیفت اطلاعات زیادی راجع به ساختمان جسم و محل قرار گرفتن پروتون ها به ما می دهد.

محل جذب:

محل شیفت شیمیایی را بر مبنای استانداردی به نام TMS تترامتیل سیلان بیان می كنیم جذب TMS در صفر PPM است مهمترین عامل موثر بر شیفت شیمیایی الکترونهای های اطراف پروتون است هر چه eها بیشتر روی پروتون ها اثر شیلدینگ بگذارند اثر میدان مغناطیسی كم شده و باید بر شدت میدان مغناطیسی افزوده شود.

TMS محافظت شده ترین پروتونها ها را دارد بنابراین به شدت از میدان مغناطیسی كم می كند و باید بر شدت میدان افزوده شود. بنابراین صفر بالاترین میدان مغناطیسی را دارد.

یك قطره TMS به همه نمونه ها اضافه می شود برای اینكه پیك صفر داشته باشیم- چون TMS 12 پروتون دارد كه از لحاظ شیمیایی یکسان هستند با یك قطره جواب می دهد. در 27°C به جوش می آید و از نمونه ها به راحتی جدا می شود.تنها مشكل TMS اینست که با حلال های مائی قابل اختلاط نیست.

برای طیف از حلال مائی: TMS را در لوله مویین می ریزیم و آن را در لوله NMR می اندازیم  (استاندارد خارجی )ویا از DSS سدیم 2,2 دی متیل، سیلاپنتا سولفونات استفاده می کنیم . این ماده هم با یك قطره یك پیك شارپ می دهد.

استفاده از استاندارد خارجی دقت زیادی ندارد بعلت عدم یكنواختی اثرمیدان بر نمونه واستاندارد .

با دستگاه NMR قدیمی(CW-NMR) حدود 50mg نمونه و 0.5cc حلال لازم داریم در دستگاه جدید با 5mg هم می توان طیف گرفت.

وقتی از ماده ای مثل اتیل بروماید طیف می گیریم دو نوع پروتون داریم.

برای یافتن تعداد پروتون ها در هر محل احتیاج به انتگرال گیری داریم.

بنابراین قلم را طوری تنظیم می كنیم كه جایی كه پیك ندارد خط صاف رسم كند و ابتدای هر پیك متناسب با تعداد پروتون ها بالا رود.پروتون های تحت تاثیر اسپین پروتون ها كربن مجاور هم قرار می گیریند كه باعث شاخه دار شدن پیك ها می شود.

تعداد شاخه ها= تعداد پروتون های كربن مجاور +1

وقتی پروتونی از دو طرف تحت تاثیر اسپین كربن مجاور قرار بگیرد فواصل شاخه ها J گفته

 می شود.اگر هر دو كربن مجاور یك پروتون با یك J اثر بگذارند بعضی شاخه ها روی هم می افتند.بنابراین تعداد شاخه ها از فرمول (nA+nB+1) بدست می آید.مقدار J گاهی برای شناسایی تركیب به كار می رود و در تركیبات ترانس مقدار J بیشتر است و برای شناسایی شكل فضایی تركیب به كار می رود.

 

قسمت های مختلف دستگاه NMR:

1- میدان اولیه ثابت Magnet

2-میدان ثانویه متغییر sweep generator

3- فرستنده امواج رادیویی

4- گیرنده امواج رادیویی

5- ركوردر

6- لوله محتوی نمونه

تهیه نمونه:

مهمترین حلال بدون پروتون در NMR ،ccl4 است اگر تركیب در آن حل شود ، بعدCDCL3 كلروفرم دو تره و بعد CD3OD متانول دوتره و D2O و در نهایت DMSO دی متیل سولفوكساید استفاده می شود(هر چه تعداد D در حلال بیشتر شود گران تر می شود.)

حلال های دو تریوم صد در صد خالص نیستند و پیك حلال دیده می شود مثلا پیك پروتون كلرفروم مربوط به CDCL3 در 7.22ppm ظاهر می شود معمولا حلال های 99.5% استفاده می شود البته 99.999% هم وجود دارد كه خیلی گران است.

اگر جسم در هیچ كدام از حلال های گفته شده حل نشد در CF3COOH حل می كنیم پروتون اسید پیك می دهد.

اگر در حدود ppm12-11 ببینیم احتمال می دهیم پیك اسید است برای مطمئن شدن بعد از طیف گرفتن یكی دو قطره آب دو دوتره اضافه می كنیم و دوباره پیك می گیریم اگر پیك شدتش خیلی كم شد پروتون اسید بوده كه قابل تبادل بوده است.

برای كالیبراسیون دستگاه NMR از تركیبی استفاده می شود كه پیك های sharp داشته باشد، مثل اتیل بنزن كه سه نوع پروتون و سه پیك دارد.

 

روش كار C.W-NMR:

برای كالیبراسیون دستگاه، نمونه اتیل بنزن را داخل لوله NMR ریخته و داخل Magnet می گذاریم و با 20 دور در ثانیه آن را می چرخانیم .

هر 60HZ=1 ppm

زمان sweep (اسكن)، 50 ثانیه است.

با استفاده ازsweep zero، TMS را روی صفر تنظیم می كنیم.

شدت پیك ها را با Spectrum amplitude تنظیم می كنیم.

هدف از استفاده اتیل بنزن تنظیم دستگاه و اطمینان از تعداد شاخه هایی است که دستگاه می دهد. 

بعد از گرفتن طیف، انتگرال گیری را انجام می دهیم و برای این كار دكمه INT را می زنیم.

سپس دكمه reset را می زنیم برای اینكه مطمئن شویم كه قلم ثبات به بالای كاغذ بر خورد

 نمی كند ابتدا قلم را بالا آورده و انتگرال می گیریم و بعد از اطمینان از مناسب بودن شدت انتگرال انتخاب شده ، قلم را پایین می آوریم و انتگرال می گیریم.

برای در آوردن نمونه spin را قطع كرده و دكمه eject را می زنیم.

با پیچ vertical قلم را پایین می آوریم ،كنترل عمودی و پیك را رسم می كنیم اگر شدت زیاد بود شدت را كم می كنیم تنظیم شدت با spectrum amplitude است.

نمونه: بوتیریك اسید

برای مشاهده پیك اسید عرض صفحه را دو برابر می كنیم و برای اینكه روی پیك های قبلی نیفتاد قلم را بالا می آوریم و برای مشاهده پیك اسید off set  600HZ=5ppm می كنیم و مقدار offset را با محل جذب جمع می كنیم در اینجا 6ppm را off set کردیم.

وقتی پیك ها از هم فاصله كمی داشته باشند. انتگرال پیوسته می گیریم زیرا خط پایه مشخص نیست تا برای پیك بعدی روی آن reset  كنیم.

 

روش كار pulse-NMR

در شروع كار باید از یكنواخت بودن میدان مطمئن شویم كه مشخص كننده میدان ثابت، سیگنال دوتریوم است. یعنی اصطلاحا" میدان را روی سیگنالی كه از دوتریوم می آید lock می كنیم. (Lock D2) تا وقتی Lock برقرار باشد میدان هموژن است و می توان طیف گرفت. تا وقتی چراغ روشن باشد و اگر به هر دلیلی lock از دست برود مانند رفتن برق و ... هموژن بودن از بین رفته و حتی روی پیك های گرفته شده نمی توان حساب كرد و باید مجددا طیف گرفت. برای تامین سیگنال دوتریوم در همه حلالها دوتریوم داریم و حتی اگر نمونه تترا كلرید كربن (بهترین حلال) حل شود باز هم مقداری كلروفرم دوتره برای برقراری lock به آن اضافه می كنیم .

طیف گیری از هسته های با فراوانی كمتر: 13C در این مورد مهم است زیرا با فراوانی1.1% دارای اسپین 2/1 است. استفاده از طیف 13C وقتی اهمیت دارد كه مثلا آلكان داریم زیرا تمام آلكان ها در PNMR پیك مشابه در ناحیه ppm 101-0.9 می دهند. اما محل جذب آلكانها در 13CNMR در محدوده بیشتر 15-35ppm است بنابراین در طیف 13C هر كربنی یك پیك می دهد مگر دو كربن كه شرایط كاملا یكسان داشته باشند، یعنی محدوده وسیع طیف 13C سبب می شود كربن ها با اختلاف جزئی نیز با فواصل مناسب ppm 6-5 از هم جدا شوند.

محدوده جذب در PNMR ، 0-15ppm ولی در 13CNMR ، O-200ppm است كه سبب ایجاد پیك های مستقل می شود.

مثلا در طیف PNMR اتیل بنزن 3 پیك زیر را دیدیم.

1-     شاخه ppm 1

2-     4 شاخه 2ppm

3-     پیك آروماتیك 7ppm

ولی در طیف 13CNMR اتیل بنزن 6 پیك می بینیم.

در طیف 13C ، splitting شاخه شاخه شدن نداریم. زیرا اثر پروتونها بر C را خودمان با عمل decoupling از بین می بریم تا طیف ساده تر شود و در مورد اثر 13C بر 13C هم احتمال كنار هم قرار گرفتن و مزدوج شدن دو 13C حدود صفر است پس در طیف 13CNMR پیك ها یك شاخه است و سطح زیر پیك نداریم.

بعلاوه ارتفاع پیك ها كه نشان دهنده تعداد 13C در یک موقعیت خاص می باشد، هیچ اطلاعی در مورد ساختمان جسم نمی دهد، چون وجود 13C در مولكول، اتفاقی است و حتی ممكن است وقتی طیف كربن های همسان روی هم افتاده پیك كوچكتری ببنیم.

بنابراین در 13CNMR تنها محل شیفت شیمیایی است كه اطلاعاتی در مورد ساختمان جسم می دهد.

 

كار با دستگاه pulse-NMR :

 گرفتن طیف هیدروژن اتیل بنزن و طیف كربن اتیل بنزن: در دستگاه یك مخزن آب برای خنك كردن مگنت وجود دارد. نمونه می چرخد تا تحت تاثیر یكنواخت میدان قرار گیرد.

همانند دستگاه قبل ارتفاع نمونه ها را تنظیم كرده و در مگنت قرار می دهیم. سپس Spin را روشن می كنیم. نمونه شروع به چرخش می كند. سیگنال دوتریوم را پیدا كرده و در وسط صفحه تنظیم می كنیم سپس دكمه lock را می زنیم تا lock D2 برقرار شود و چراغ روشن شود و میدان یكنواخت گردد. برای كالیبره كردن دستگاه NMR از اتیل بنزن طیف می گیریم دستگاه وقتی تنظیم است كه با یك scan طیف خوبی از اتیل بنزن بگیریم. برای طیف كربن وقتی تنظیم است كه با یک Scan طیف خوبی را اتیل بنزن 80% بگیریم پس از گرفتن طیف انتگرال می كنیم.

منبع: وب شیمی www.WebShimi.ir

نظرات()

چهارشنبه 1390/09/23

گاز کروماتوگرافی جرمی GC-Mass

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

«گاز کروماتوگرافی جرمی   GC-Mass»

  شناسایی دستگاه GC-Mass

مشابه دستگاه GC است. تنها تفاوت آن با GC معمولی این است كه در این دستگاه دتكتور مربوطه دتکتور Mass است .تفاوتهای دیگر آن عبارتند از 1- از ستون موئینه (كاپیلری) استفاده می كنیم. نوع ستون به اسم تجارتی DB-5 است. از نظر پلاریته ستون دارای پلاریته متوسطی است. طولش m30است و برای كارهای عمومی استفاده می شود از آنجا كه عوض كردن ستون زیاد ساده نمی باشد. سعی می كنیم ستونی را انتخاب كنیم كه نمونه های زیادی را با آن تعیین كنیم.

2- احتیاج به حجم نمونه خیلی كمی برای تزریق داریم. معمولا 0.1 میكرولیتر حجم تزریق است، گاهی همین ml0.1 هم برای تزریق به این دستگاه زیاد است پس از سیستمی كه برای رقیق كردن نمونه است و split یا spliless نام دارد استفاده می كنیم. Split یعنی چند شاخه شدن یعنی نمونه ای که به دستگاه تزریق می کنیم عدد split را به دستگاه می دهیم .مثلا100،نمونه به همان مقدار تقسیم شده و یكی از آن قسمتها وارد دستگاه می شود.

گاهی نمونه خالص، خیلی غلیظ است و حتی با طریق split خط پایه خوبی ندارد. پس این نمونه ها را رقیق می كنیم (معمولا با متانل) مجبوریم ml 0.2-0.1 از نمونه را تزریق كنیم، چون حجم حلال زیاد و حجم نمونه كم است كه در اینجا به مقدار زیاد حلال به دستگاه می رسد كه ممكن است فشار زیادی به دستگاه وارد کند، بنابراین به اندازه Rt حلال به دستگاه delay (تاخیر) می دهیم تا فیلاماندستگاه پس از خروج حلال روشن شود، كه متانل بعد از 2 دقیقه می آید، یعنی دستگاه 2 دقیقه طیف جرم نمی گیرد.

در Mass احتیاج داریم كه مقادیر میكروگرم از نمونه را تحت شرایط خلا بخار نموده و از آن طیف بگیریم . پس نیاز به خلا داریم كه توسط توربوپمپ Turbo pump خلا mmHg 7-10 ایجاد می شود. دو طریق عمده برای یونیزاسیون نمونه داریم: 1- طریقه Electron Ionization الكترون یونیزاسیون (EI): كه انرژی حدود ev 70 به جسم اعمال می شود. مقدار شكست ها خیلی زیاد است، پس اطلاعات راجع به ساختمان شیمیائی جسم بیشتر می شود. تنها اشكال آن ندیدن پیك یون ملكولی در برخی اوقات است.

2- روش chemical Ionization یونیزاسیون شیمیایی (C.I): از گاز متان، ایزوبوتان، آمونیاك برای شكستن جسم استفاده می كنیم كه طریق نرمتری است ولی یون ملكولی را می بینیم.ما به روش EI كار می كنیم.

در شروع كار با دستگاه بایدتشکیل خلا را چك كنیم كه به میزان قابل قبولی رسیده باشد به خاطر اینكه وجود آب پیک (18)، ازت (28)، اكسیژن (32) را ایجاد می کنند.با این حال معمولا وقتی طیف Mass می گیریم به آن برنامه می دهیم كه از mass 40 به بالا را بگیرد.

لازم است كه ماهی یكبار كالیبراسیون را برای دستگاه انجام می دهیم، یعنی از یك جسم استاندارد طیف Mass بگیریم و ببنیم آیا مطابقت دارد یا نه؟ استاندارد: پرفلوروتری بوتیل آمین كه در داخل خود دستگاه در داخل یك شیشه كوچك تعبیه شده این جسم دارای پیك های شارپی در نواحی به خصوصی هست، اگر دستگاه بتواند این پیك ها را پیدا كند، در آن صورت اعلام می دارد كه آیا دستگاه كالیبره هست یا نه.

مزیت دیگر این دستگاه: امكان جستجو در كتابخانه (Library) دستگاه هست، بعد از گرفتن طیف می توان در كتابخانه دستگاه رفته و search یا جستجو نمود. برای هر گروه از مواد، كتابخانه جداگانه ای وجود دارد. دستگاه 10 كاندید را پیشنهاد می كند.

فاكتور P (purity) درصد احتمال صحت كاندیداها را نشان می دهد كه اگر بالاتر از 80% (اعداد بالاتر از 800)  باشد، قابل قیول است.

اگر فاكتور P از 800 به بالا بود، به معنی این است كه جسم با احتمال بیش از 80%  همان كاندید است. فرض كنیم پیك جسمی از 3 فراكشن C,B,A تشكیل شده باشد. این دستگاه ضمن اینكه كروماتوگرام را به ما می دهد، طیف Mass را نیز به ما می دهد. یعنی از هر جزء (Fragment) طیف Mass گرفته می شود.

تنها محدودیت این دستگاه این است كه چون سیستم وارد كننده نمونه به دستگاه GC, Mass است. پس در واقع تنها موادی را می توان با GC شناسائی نمود كه فرار باشند یا از آنها بتوان مواد فرار (توسط مواد مشتق ساز مواد فرار) تهیه كرد. مواد مشتق ساز عبارتند از: مشتقات سیلیس (تری میتل سیلان) كه با جسم ایجاد مشتقات فرار قابل تزریق به GC را می نمایند.

قسمتهای مختلف دستگاه:

1- مخزن هلیم: He با خلوص بسیار بالا

2- injector: فلوی گاز حامل را روی Psi 12 تنطیم می كنیم. در قسمت split flow . میزان رقیق شدن نمونه را تعیین می كنیم، یعنی نمونه با گاز حامل تقسیم به نسبت می شود و تنها به نسبت 1به عدد تقسیم وارد ستون می گردد. ممكن است قسمت GC با یك دتكتور FID به عنوان یك بخش مستقل استفاده شود.

3- ستون: از نوع كاپیلری   طول: 30m                      نوع DB-5

بعد از مدتی ستون كثیف می شود كه باید آن را مجددا احیاء (رژنره) كنیم، برای این كار مدتی ستون را در دمای ° 215-200 قرار می دهیم تا اشغالها بسوزد. پس از چند بار با این روش هم دیگر نمی توان ستون را احیاء مجدد نمود، و باید cm 20 اول ستون را قطع نمود، چرا كه اغلب اشغالها در cm 20 اول ستون هستند.

4- detector( دتکتور همان دستگاه Mass می باشد.

5- Recorder

6- برای قسمت Mass احتیاج به پمپ برای ایجاد خلا داریم

برای كار با دستگاه : ابتدا وارد بخش Instrumental control می شویم كه در اینجا میزان آب و هوا را مشاهده می كنیم. سپس calibration Mass انجام می شود كه پیكهای استاندارد پیدا شده و منحنی استاندارد رسم می شود. اگر در هر بخش اشكالی ایجاد شود، در بخش Diagnostics اشكال را پیدا می كنیم.

سپس در بخش analysis موارد زیر تعیین می شود:

نام فایل مشخص می شود. 1- Data file

پارامترهایی مثل: دما، زمان و... مشخص می شود 2-GC Method

مشخصات فوق می تواند توسط فرد تعیین شود (با Edit) و یا پیش فرضهای دستگاه پذیرفته شود با فشار دادن كلید C، می توان كروماتوگرام تركیب را بدست آورد و با كلید F1 از هر محل دلخواه كروماتوگرام به طیف Mass را بدست آورد.

همچنین در بخش Chrome analysis می توان كروماتوگرام ماده را مشاهده كرد، بخشی از آن را بزرگ كرد و از هر قسمت دلخواه طیف Massرا بدست آورد.

پس از رسم طیف Mass با فشار دادن كلید L وارد كتابخانه (Library) دستگاه می شویم كه
می توان در این بخش تركیب را در كتابخانه موردنظر (مثلا
 Libraryترپنوئیدها، و ...) جستجو Search نمود. همانطور كه گفته شد فقط انتخابهایی كه purity بالاتر از 800  قابل قبول می باشد. در نهایت خاموش كردن دستگاه را می توان بصورت دستی (manual) انجام داد یا از قسمت shut down استفاده نمود كه انجام مراحل خاموش كردن دستگاه، چند ساعت طول
می كشد********

 

اساس كار با دستگاه

به ازای تعداد فراكسیونهای موجود در اساس در كروماتوگرام پیك ظاهر می شود. در كروماتوگرام محور Xها مشخص كننده Rt و محور yها تعیین كننده شدت پیك هاست، طوری كه با اندازه گیری AUC می توانیم تعیین مقدار كنیم و نیز با Rt شناسایی كیفی انجام می دهیم.

تفاوت این دستگاه با GC اینست كه در اینجا از هر فراكسیون در دستگاه Mass طیف جرم گرفته می شود. در این طیف های جرم پیك ها تك شاخه ایست. فراوانی Base peak ، 100% است و بلندترین پیك انتهایی پیك یون مولكولی می باشد. بعد از انتخاب پیك مربوط به هر فراكسیون در طیف كروماتوگرام تعیین (scan number)، دستگاه طیف جرم مربوط به آن را رسم كرده سپس طیف جرم را به كتابخانه دستگاه برده و برحسب درصد انطباق برای هر طیف 10 تا كاندیدا می دهد.

در این دستگاه GC و Mass از هم جدا نمی شود و طرز وارد كردن نمونه به دستگاه Mass  از طریق GC می باشد، بنابراین در این دستگاه، فقط از نمونه هایی می توانیم طیف جرم تهیه كنیم كه بتوانیم به GC تزریق نمائیم. پس به طور عمده این دستگاه برای شناسایی و تعیین مقدار فراكسیونهای اسانس هاست كه مواد فرار هستند.

ستون دستگاه GC از نوع لوله موئینه است زیرا باید حجم نمونه كم باشد تا طیف جرمی خوبی به دست آید. برای كاهش حجم نمونه چند كار انجام می شود: یك راه رقیق كردن اسانس با حلال (معمولا متانول) است و یا می توان به جای تزریق، فقط سرسوزن را به اسانس آغشته نمود. اما بازهم گاه مشاهده می شود كه تنها با رقیق كردن، پیك ها از صفحه بیرون می زند. به همین منظور در دستگاه سیستم Split  طراحی شده كه این سیستم آنچه را كه از طریق injector وارد دستگاه می شود، تقسیم می كند و یك قسمت را وارد ستون كرده و بقیه را از پشت دستگاه خارج می كند كه براساس میزان فلویی كه ما برای دستگاه مشخص می كنیم این تقسیم صورت می گیرد كه حداكثر آن معمولا 300/1 است.

برای شروع كار با دستگاه روش كار با دستگاه، باید مطمئن شویم كه در دستگاه خلا برقرار شده زیرا باید طیف جرم را در خلا بگیریم. سپس باید دستگاه را كالیبره كنیم. به این منظور از ماده پرفلوئورو تری بوتیل آمین استفاده می كنیم.

دستگاه این ماده را با FC-43 می شناسد. این تركیب دارای 6 پیك مشخص است و اگر این پیك ها سرجایشان بودند یعنی دستگاه درست كار می كند. این ماده را ما به دستگاه تزریق نمی كنیم، بلكه به دستگاه برنامه ای می دهیم تا براساس این ماده كالیبره شود، یعنی قبل از شروع هر كاری وقتی مطمئن شدیم خلا برقرار شده یك برنامه به دستگاه می دهیم تا از استاندارد استفاده كند.

در مرحله بعد باید متدهای GC و Mass را مشخص كنیم.

متدی كه برای GC انتخاب می كنیم ESS است. این متد تركیبی ازمتد ایزوترمال به مدت min 10 و بعد پروگرامیك  است كه در آن دمای شروع و اتمام كار مشخص است. در متدی كه برای Mass انتخاب می كنیم Mass range مشخص می شود كه معمولا این محدود را از 40 تا 300 می گیریم. زیرا در محدوده كمتر از 40 پیك نداریم و نیز در این جا مزاحمت هایی هم وجود دارد. در متد Mass یك مدت زمان تاخیر (delay time) هم در نظر می گیریم، در این مدت فقط حلال (متانول) از دستگاه خارج می شود و طیف جرم آنرا نمی گیریم بنابراین در دو دقیقه اول پیكی رسم نمی شود. علت این كار اینست كه تعداد مولكول های متانول نسبت به جرم ماده نمونه زیاد است كه اگر طیف جرم آن را بگیریم فشار زیادی به دستگاه می آید.

در متد Mass روش گرفتن طیف جرم (Ionization mode) را هم مشخص می كنیم. به طور كلی دو روش وجود دارد EI(Electron Ionization) و CI(Chemical Ionization) كه ما در این جا از روش EI استفاده می كنیم.شکسته شدن به روش EI شدیدتر از CI است و در این روش طیف های بیشتری مشاهده می شود زیرا شكست ها بیشتر است و ممكن است یون مولكولی مشاهده نشود.

ستون دستگاه با اسم تجارتی DB-5، دارای پلاریته متوسط بوده و در آن از گاز هلیوم به عنوان حامل استفاده می شود. (در اینجا از گاز ازت برای شكستن خلا استفاده می كنیم). اگر ببنیم كیفیت ستون كاهش یافته (به علت چسبیدن ماده به آن كارایی كم شده باشد) 10-20 سانتی متر اول ستون را قطع می كنیم. ستون از یك طرف به سیستم تزریق و از طرف دیگر به دتكتور وصل است. می توان تا 300 فلواسپلیت داشته باشیم. آنچه به ستون تزریق می شود با گاز حامل مخلوط شده و بعد تقسیم می شود.

در قسمت Instrumental control باید چك كنیم كه در قسمت خلا آب و هوا نباشد بعد وارد قسمت آنالیز شده و متدهای مورد نظر را به دستگاه download می كنیم. سپس باید منتظر بمانیم تا دستگاه GC  گرم و آماده شود. وقتی چراغ GC روشن شد آماده تزریق خواهد بود. در اینجا مدت تزریق 70 دقیقه طول می كشد. هر چه طیف جرم را با غلظت كمتر بگیریم. طیف بهتری خواهیم داشت مثلا اگر فراكسیون A در بین دقیقه های 3تا5 بیرون آمده در هر ثاینه آن یك طیف جرم گرفته می شود و معمولا طیف جرم از راس پیك با ابتدا و انتهای پیك متفاوت است زیرا در قسمت راس غلظت فراكسیونها بیشتر است. غلظت بیشتر باعث شلوغ شدن طیف جرم می شود. بنابراین از طیف های جرم پای پیك یعنی با scan number پائین تر برای بردن به كتابخانه استفاده می كنیم.

در دستگاه كتابخانه های مختلفی برای جستجو وجود دارد كه كتابخانه ترپن ها بهترین كتابخانه برای جستجوی اسانس هاست. (البته كتابخانه های بزرگ دیگری هم وجود دارد).گاه نتایج بسیار متنوعی با جستجو در كتابخانه های مختلف مشاهده می شود. معیار قبول كردن كاندیداها فاكتور purity می باشد كه حداكثر آن 1000 است و نشاندهنده انطباق 100% می باشد. معیار قبولی كاندیدا purity برابر 800 را انطباق 80% است. و معمولا سه كاندیدای اول اهمیت بیشتری دارند یادداشت می شوند.

منبع: وب شیمی www.WebShimi.ir

نظرات()

دوشنبه 1390/09/21

منگانومتری

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

منگانومتری :

منگانومتری به دسته ای از تیتراسیونهای اکسایش کاهش گفته می شود که در آنها واکنش اکسیداسیون با پتاسیم پرمنگنات انجام می شود یعنی در این روش از محلول استاندارد پتاسیم پرمنگنات استفاده می شود.

شرح آزمایش:

ابتدا بورت را با آب مقطر بشویید. سپس آن را با پتاسیم پر منگنات KMnO4  شست وشو دهید وپس ازشست وشو آن را تا صفر پر از پتاسیم پرمنگنات کنید. سپس حدود ١٠ میلی لیتر اگزالیک اسید را داخل ارلن ریخته و به آن ١٠ میلی لیتر سولفوریک اسید N4 اضافه کنید. ارلن را تا ٦٠ درجه سلسیوس حرارت بدهید. 

حال ارلن را زیر بورتی که به پایه وصل است قرار داده و در حالی که با دست چپ شیر بورت را باز می کنید تا قطره قطره پتاسیم پرمنگنات که رنگ ارغوانی پر رنگی را دارد درون ارلن بریزد، با دست راست ارلن را به صورت دورانی به حرکت در می آوریم  مشاهده کردیم که پس از چند میلی لیتر مصرف پتاسیم پرمنگنات رنگ صورتی در مایع بوجود آمد. دقت شود که هنگامی که ارلن  را می خواهید زیر بورت قرار دهید نباید زیاد گرم باشد .پس از مصرف ١٠ میلی لیتر رنگ صورتی پایداری در محلول بوجود آمد. 

حال می توانیم نرمالیته پرمنگنات پتاسیم را محاسبه کنیم :

 جرم سدیم اگزالات     [NA2C2O4] .134g


نظرات()

دوشنبه 1390/09/21

عدد اکسایش

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

مفهوم عدد اکسایش

اعداد اکسایش بارهایی (در مورد ترکیبات کووالانسی ، بارهایی فرضی) هستند که بر طبق قواعدی اختیاری به اتم‌های یک ترکیب نسبت داده می‌شوند. عدد اکسایش یونهای تک اتمی ‌، همانند بار آن یونهاست.

قوانین تعیین اعداد اکسایش

این قوانین باید ساده و روشن باشند و در صورت امکان نتایج مستدلی از نظر شیمیایی ارائه داده و ابهامی‌ نداشته باشند. این قواعد را که عموما پذیرفته شده‌اند، باید به همان ترتیبی که ارائه شده است، بکار برد. اعمال این قوانین برای تعیین اعداد اکسایش ترکیبات معدنی محکی از اظهارات فوق است. عدد اکسایش یونهای تک اتمی‌، همانند بار آن یونها است.


عدد اکسایش اتم‌های یک ترکیب کووالانسی را می‌‌توان با نسبت دادن الکترونهای هر پیوند به اتم الکترونگاتیوتر درگیر در پیوند بدست آورد. در مورد اتم‌های همانند که بین آنها یک پیوند غیرقطبی وجود دارد و الکترونهای پیوند به تساوی بین این اتمها تقسیم شده‌اند، عدد اکسایش صفر است.

                قاعده/کاربرد

                              عدد اکسایش


جمع اعداد اکسایش همه اتمهای موجود در گونه‌ها برابر با بار کلی گونه مربوطه است.



برای اتمها در شکل عنصری

0


برای عناصرگروه I

1+


برای عناصرگروه II

2+


برای عناصرگروه III (به‌غیر از B

3+ برای M+3 و 1+ برای M+1


برای عناصرگروه IV (به‌غیر از C و Si

4+ برای M+4 و 2+ برای M+2


برای هیدروژن

1+ در ترکیب با غیرفلزات و 1- در ترکیب با فلزات


برای فلوئور

1- در همه ترکیبات


برای Cl , Br , I

1- مگر در ترکیب با اکسیژن


برای اکسیژن

2- مگر در ترکیب با F ، 1- در پروکسیدها (O-22) ، 2/1- در سوپروکسیدها (O-2) ،3/1- در اوزونیدها (O-3)


در مواجهه با مولکول آلی و مثالهایی از جمله زنجیری شدن ، آب‌زدایی ، اکسایش و شروع با این قواعد را تشریح می‌کنند. آنچه باعث نگرانی می‌شود، عبارت است از:

·      زنجیری شدن، به عنوان یک واکنش اکسایش ـ کاهش ظاهر می‌‌شود.

·      عدد اکسایش اتم های کربن در هیدروکربنها 5 واحد اختلاف دارد، از 4- در تا صفر در

·      عدد اکسایش اتم کربن ، هنگامی ‌که از به می‌‌رویم، 8 واحد تغییر می‌‌کند.

·      عدد اکسایش اتم کربن موجود در متانول 2- ، در همه انواع الکلهای نوع اول 1- ، در الکل نوع دوم  0، و در الکل نوع سوم 1+ است.

·      آب‌دهی و آب‌زدایی هیدروکربنها مفهوم یکسانی از واکنش‌های اکسایش ـ کاهش هستند، همانند تشکیل الکل یا هالید.

·      عدد اکسایش هیدروژن در پیوند با اکسیژن و با اتم کربن یکسان است.

 


نظرات()

دوشنبه 1390/09/21

جدول شناساگرهای رایج اسید-باز

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

شناساگر

محدوده pH

مقدار در هر 10 سی سی

رنگ محیط اسیدی

رنگ محیط بازی

Thymol Blue

1.2-2.8

1-2 drops 0.1% soln. in aq.

قرمز

زرد

Pentamethoxy red

1.2-2.3

1 drop 0.1% soln. in 70% alc.

قرمز-بنفش

بیرنگ

Tropeolin OO

1.3-3.2

1 drop 1% aq. soln.

قرمز

زرد

2,4-Dinitrophenol

2.4-4.0

1-2 drops 0.1% soln. in 50% alc.

بیرنگ

زرد

Methyl yellow

2.9-4.0

1 drop 0.1% soln. in 90% alc.

قرمز

زرد

Methyl orange

3.1-4.4

1 drop 0.1% aq. soln.

قرمز

نارنجی

Bromphenol blue

3.0-4.6

1 drop 0.1% aq. soln.

زرد

آبی-بنفش

Tetrabromphenol blue

3.0-4.6

1 drop 0.1% aq. soln.

زرد

آبی

Alizarin sodium sulfonate

3.7-5.2

1 drop 0.1% aq. soln.

زرد

بنفش

α-Naphthyl red

3.7-5.0

1 drop 0.1% soln. in 70% alc.

قرمز

زرد

p-Ethoxychrysoidine

3.5-5.5

1 drop 0.1% aq. soln.

قرمز

زرد

Bromcresol green

4.0-5.6

1 drop 0.1% aq. soln.

زرد

آبی

Methyl red

4.4-6.2

1 drop 0.1% aq. soln.

قرمز

زرد

Bromcresol purple

5.2-6.8

1 drop 0.1% aq. soln.

زرد

ارغوانی

Chlorphenol red

5.4-6.8

1 drop 0.1% aq. soln.

زرد

قرمز

Bromphenol blue

6.2-7.6

1 drop 0.1% aq. soln.

زرد

آبی

p-Nitrophenol

5.0-7.0

1-5 drops 0.1% aq. soln.

بیرنگ

زرد

Azolitmin

5.0-8.0

5 drops 0.5% aq. soln.

قرمز

آبی

Phenol red

6.4-8.0

1 drop 0.1% aq. soln.

زرد

قرمز

Neutral red

6.8-8.0

1 drop 0.1% soln. in 70% alc.

قرمز

زرد

Rosolic acid

6.8-8.0

1 drop 0.1% soln. in 90% alc.

زرد

قرمز

Cresol red

7.2-8.8

1 drop 0.1% aq. soln.

زرد

قرمز

α-Naphtholphthalein

7.3-8.7

1-5 drops 0.1% soln. in 70% alc.

گلی

سبز

Tropeolin OOO

7.6-8.9

1 drop 0.1% aq. soln.

زرد

گلی-قرمز

Thymol blue

8.0-9.6

1-5 drops 0.1% aq. soln.

زرد

آبی

Phenolphthalein

8.0-10.0

1-5 drops 0.1% soln. in 70% alc.

بیرنگ

قرمز

α-Naphtholbenzein

9.0-11.0

1-5 drops 0.1% soln. in 90% alc.

زرد

آبی

Thymolphthalein

9.4-10.6

1 drop 0.1% soln. in 90% alc.

بیرنگ

آبی

Nile blue

10.1-11.1

1 drop 0.1% aq. soln.

آبی

قرمز

Alizarin yellow

10.0-12.0

1 drop 0.1% aq. soln.

زرد

یاسی

Salicyl yellow

10.0-12.0

1-5 drops 0.1% soln. in 90% alc.

زرد

نارنجی-قهوه ای

Nitramine

11.0-13.0

1-2 drops 0.1% soln in 70% alc.

بیرنگ

نارنجی- قهوه ای

Poirrier’s blue

11.0-13.0

1 drop 0.1% aq. soln.

آبی

بنفش-صورتی

Trinitrobenzoic acid

12.0-13.4

1 drop 0.1% aq. soln.

بیرنگ

نارنجی-قرمز


نظرات()

شنبه 1390/09/12

معرف برموفنول آبی

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

Bromophenol blue
Properties
Molecular formula C19H10Br4O5S
Molar mass 669.96 g mol−1

نظرات()

شنبه 1390/09/12

معرف متیل زرد

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

Methyl yellow
Properties
Molecular formula C14H15N3
Molar mass 225.289 g.mol-1
Appearance Yellow crystals
Melting point

116 °C (decomp.)

Solubility in water 13.6 mg.l-1
log P 4.58


نظرات()

شنبه 1390/09/12

معرف مالاشیت سبز

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

Malachite green
Properties
Molecular formula C23H25ClN2 (chloride)
Molar mass 364.911 g/mol (chloride)


نظرات()

شنبه 1390/09/12

معرف متیل بنفش

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

Crystal violet
Properties
Molecular formula C25N3H30Cl
Molar mass 407.979 g mol-1
Exact mass 407.212825682 g mol-1
Melting point

205 °C, 478 K, 401 °F

Hazards
GHS pictograms The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The health hazard pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The environment pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)


نظرات()

جمعه 1390/09/11

معرف برموفنول آبی

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

Bromophenol blue
Properties
Molecular formula C19H10Br4O5S
Molar mass 669.96 g mol−1

نظرات()

جمعه 1390/09/11

معرف آلیزارین زرد

• نوع مطلب: شیمی تجزیه ،
• نوشته شده توسط: ArAm

Alizarine Yellow R
Properties
Molecular formula C13H8N3NaO5 (Na salt)
C13H9N3O5 (acid)
Molar mass 309.21 g mol−1 (Na salt)
287.23 g mol−1 (acid)

نظرات()

  • تعداد صفحات :2
  • 1  
  • 2